Q.P.Code: 20EC0442

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. IV Year I Semester Regular & Supplementary Examinations October/November-2025 VLSI DESIGN

		VLSI DESIGN			
m :		(Electronics & Communications Engineering)	3.5	3.5 1	
Tim	ıe:	3 Hours (Answer all Five Units $5 \times 12 = 60 \text{ Marks}$)	Max.	Mark	s: 60
		UNIT-I	~~.		
1	a		CO1	L2	6 M
	b	Explain working of the NMOS transistor.	CO ₁	L2	6 M
		OR			
2	a	What are the different forms of Pull Up Loads? Which is the best choice for realization?	CO2	L1	6M
	b	Derive the expression for threshold voltage for MOS transistors.	CO2	L3	6M
	~	UNIT-II	002	20	0111
3	a	Explain the steps involved in VLSI Design flow.	CO3	L2	6M
	b	Construct the stick diagram of a 2-input CMOS NAND gate.	CO3	L3	6M
		OR			
4	a	Illustrate stick diagram of AND-OR-INVERTER in CMOS design Style	CO3	L2	6M
	b	Explain about Implant and demarcation line in stick diagrams with neat	CO3	L2	6M
		Sketches.			
		UNIT-III			
5	a	Draw the CMOS implementation of 4X1 mux using transmission gates?	CO4	L1	6M
		Explain pseudo NMOS logic gate?	CO4	L2	6M
		OR			
6	a	What design methods are used in physical design cycle? Explain each	CO4	L1	6 M
		term with suitable diagrams.			
	b	What is routing? Explain about different routing techniques.	CO4	L2	6 M
		UNIT-IV			
7	a	Define the Counters in the digital circuit. Design 4-bit Asynchronous	CO6	L1	6M
		counter.			
	b	Define Parity generator logic circuits. Design 4-bit Parity generator	CO6	L3	6M
		using EX-OR gate.			
		OR			
8	a	Construct and explain the circuit diagram of 3-bit LFSR with example.	CO6	L3	6M
	b	Construct and explain the Johnson counter.	CO6	L3	6M
		UNIT-V			
9	a	Compare PROM, PAL, and PLA with an example.	CO5	L1	6M
		Design the PAL Structure for the Boolean function	CO5	L3	6M
	~	fl(a,b,c,d)=ab+bc & f2(a,b,c,d)=ab+cd			
		OR			
10	a	What is testing? Explain any three test principles.	CO5	L1	6M
- •	b	What is controllability and observability? Give examples to explain it.	CO5	L2	6M
	-	*** END ***			